بررسی مقاومت میکروبی، ارزیابی فنوتیپی و ژنتیکی پمپ افلاکس norA در سویه های استافیلوکوکوس اورئوس مقاوم به متی سیلین (MRSA) و سیپروفلوکساسین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه آموزشی بیوتکنولوژی، دانشکده علوم و فناوری های نوین، واحد علوم دارویی دانشگاه آزاد اسلامی، تهران

2 استادیار، گروه آموزشی بیوتکنولوژی، دانشکده علوم و فناوری های نوین، واحد علوم دارویی دانشگاه آزاد اسلامی، تهران

3 استادیار، باشگاه پژوهشگران جوان و نخبگان، واحد تهران شرق، دانشگاه آزاد اسلامی، تهران

4 استادیار، گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران

چکیده

سابقه و هدف: استافیلوکوکوس اورئوس یکی از مهمترین علل عفونت های فرصت طلب بیمارستانی در سرتاسر جهان می باشد. پمپ های افلاکس از جمله norA نقش اساسی در بروز مقاومت به آنتی بیوتیک های مختلف در این باکتری دارد. این مطالعه با هدف ارزیابی الگوی مقاومت آنتی بیوتیکی و بررسی وجود پمپ افلاکس norA به صورت فنوتیپی و ژنوتیپی در سویه های MRSA مقاوم به سیپروفلوکساسین انجام شد.
مواد و روش ها: در این مطالعه مقطعی تعداد 250 نمونه بالینی از بیمارستان های مختلف شهر تهران جمع آوری گردید. جدایه های استافیلوکوکوس اورئوس شناسایی و الگوی حساسیت دارویی آنها مشخص شد. حداقل غلظت بازدارنده (MIC) سیپروفلوکساسین در سویه های MRSA مقاوم به سیپروفلوکساسین تعیین گردید. همچنین، وجود پمپ افلاکس norA از نظر فنوتیپی و ژنوتیپی به ترتیب با استفاده از MIC سیپروفلوکساسین و اتیدیوم بروماید در حضور مهار کننده پمپ افلاکس (CCCP) و واکنش زنجیره ای پلی مراز (PCR) انجام شد.
یافته ها: در مطالعه حاضر 50 جدایه استافیلوکوکوس اورئوس جداسازی شد. آزمون حساسیت میکروبی نشان داد که 34 سویه (68 درصد) از جدایه ها مقاوم به متی سیلین (MRSA) بودند. از این میان 12 سویه (24 درصد) مقاوم به سیپروفلوکساسین بودند. همچنین تمامی سویه های مقاوم دارای ژن پمپ افلاکس norA و دارای پمپ افلاکس فعال بودند.
نتیجه گیری: به نظر می رسد ارتباطی بین پمپ افلاکس norA و مقاومت به سیپروفلوکساسین در سویه های استافیلوکوکوس اورئوس وجود دارد. به طوری که توسعه مهارکننده های پمپ افلاکس می تواند در کنترل سویه های مقاوم به سیپروفلوکساسین مفید باشد.

کلیدواژه‌ها

موضوعات


1. Iliyasu G, Daiyab FM, Tiamiyu AB, Abubakar S, Habib ZG, Sarki AM, Habib AG. Nosocomial infections and resistance pattern of common bacterial isolates in an intensive care unit of a tertiary hospital in Nigeria: A 4-year review. J Crit Care. 2016; 34: 116-120.

2. Changchien CH, Chen SW, Chen YY, Chu C. Antibiotic susceptibility and genomic variations in Staphylococcus aureus associated with Skin and Soft Tissue Infection (SSTI) disease groups. BMC Infect Dis. 2016; 10:16(1): 276.

3. Davoodabadi F, Mobasherizadeh S, Mostafavizadeh K, Shojaei H, Havaei SA, Koushki AM, Moghadasizadeh Z, Meidani M, Shirani K. Nasal colonization in children with communityacquired methicillin-resistant Staphylococcus aureus. Adv Biomed Res. 2016; 11; 5: 86.

4. Mustapha M, Bukar-Kolo YM, Geidam YA, Gulani IA. Phenotypic and genotypic detection of methicillin-resistant Staphylococcus aureus in hunting dogs in Maiduguri metropolitan, Borno State, Nigeria. Vet World. 2016; 9(5): 501-506.

5. Garonzik SM, Lenhard JR, Forrest A, Holden PN, Bulitta JB, Tsuji BT. Defining the active fraction of daptomycin against Methicillin-Resistant Staphylococcus aureus (MRSA) using a pharmacokinetic and pharmacodynamic approach. PLoS One. 2016; 11(6): e0156131.

6. Borgmann S, Rieß B, von Wernitz-Keibel T, Bühler M, Layer F, Strommenger B. Recovery of a 10-year-old girl from methicillin-resistant Staphylococcus aureus sepsis in response to low-dose ceftaroline treatment. Ther Clin Risk Manag. 2016; 11; 12: 749-753.

7. K. Poole. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007; 39: 162-176.

8. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004; 64; 159-204.

9. Kosmidis C, Schindler BD, Jacinto PL, Patel D, Bains K, Seo SM, Kaatz GW. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int J Antimicrob Agents. 2012; 40: 204-209.

10. Paulsen IT, Lewis K. Microbial multidrug efflux. Horizon Scientific. 2002; 3(2): 143-144.

11. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs. 2009; 69: 1555-1623.

12. Ding Y, Onodera Y, Lee JC, Hooper DC. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol. 2008; 190: 7123-7129.

13. Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev. 2005; 57: 1486-1513.

14. Motallebi M, Jabalameli F, Asadollahi K, Taherikalani M, Emaneini M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog. 2016; 97: 34-37.

15. Ruu HD, Cornelis V, Christel D, Michele B, Nancy L, Etienne EE, Stobberingh A. Rapid detection of panton-valentine leukocidin from clinical isolates of Staphylococcus aureus strains by Real-Time PCR. J FEMS Microbial Letters. 2004; 240(2): 225-228.

16. Clinical and laboratory standards institute (CLSI), 2006. Performance standards for antimicrobial susceptibility testing; 16th informational supplement. CLSI, Wayne, Pa. M100-S16, 26, no. 3. 2006.

17. Wielders CL1,Fluit AC ,Brisse S ,Verhoef J ,Schmitz FJ .mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol. 2002; 40(11): 3970-3975.

18. Ding Y, Onodera Y, Lee JC. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol. 2008; 190(21): 7123-7129.

19. Ardebili A, Talebi M, Azimi L, Rastegar Lari A. Effect of efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone on the minimum inhibitory concentration of ciprofloxacin in Acinetobacter baumannii clinical isolates. Jundishapur J Microbiol. 2014; 7(1): e8691.

20. Ghosh S, Banerjee M. Methicillin resistance & amp; inducible clindamycin resistance in Staphylococcus aureus. Indian J Med Res. 2016; 143(3): 362-364.

21. Pourmand MR, Yousefi M ,Salami SA ,Amini M .Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexa hydroquinoline derivative by Real-time PCR. Acta Med Iran. 2014; 52(6): 424-429.

22. Ardebili A, Lari AR, Beheshti M, Lari ER. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iran J Basic Med Sci. 2015; 18(6): 623-626.

23. Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006; 19: 382-402.

24. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM. Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Basic Microbiol. 2008; 48(4): 245-251.

25. Patel D, Kosmidis C ,Seo SM ,Kaatz GW .Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus. Antimicrob Agents Chemother. 2010; 54(12): 5070-5073.

26. Costa SS, Junqueira E ,Palma C ,Viveiros M ,Melo-Cristino J ,Amaral L ,Couto I. Resistance to antimicrobials mediated by efflux pumps in Staphylococcus aureus. Antibiotics (Basel). 2013; 2(1): 83-99.

27. Couto I, Costa SS ,Viveiros M ,Martins M ,Amaral L .Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. J Antimicrob Chemother. 2008; 62(3): 504-513.