مقایسه عملکرد سلول های آزاد و تثبیت شده باسیلوس لیکنی فورمیس در تولید پروتئاز قلیایی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 سازمان پژوهش های علمی و صنعتی ایران، پژوهشکده زیست فناوری

2 دانشگاه شاهد، دانشکده علوم پایه، گروه بیوتکنولوژی

3 مرکز تحقیقات بیولوژی مولکولی، دانشگاه علوم پزشکی بقیه الله (عج)

چکیده

سابقه و هدف: پروتئازها گروه مهمی از آنزیم‌های صنعتی هستند که امروزه به طور گسترده‌ای در صنایع مختلف مانند صنایع شوینده، چرم، دارویی و غذایی مورد استفاده قرار می‌گیرند. این مطالعه با هدف تثبیت سلول‌های باسیلوس لیکنی‌فرمیس در گویچه‌های آلژینات کلسیم ، بررسی اثر آن بر میزان تولید پروتئاز قلیایی و تأثیر عوامل مختلف بر پایداری گویچه‌های انجام شد. مواد و روش‌ها: در ابتدا سلول‌های زنده باسیلوس لیکنی‌فرمیس در داخل گویچه‌های آلژینات کلسیم تثبیت شدند. بیوکاتالیست‌های تثبیت شده به منظور تولید پروتئاز قلیایی مورد استفاده قرار گرفتند. میزان تولید پروتئاز قلیایی در دو حالت تخمیر توسط سلول‌های تثبیت شده و غوطه‌ور با یکدیگر مقایسه شدند. تاثیر میزان پرشدگی سلولی در گویچه‌ها بر میزان تولید آنزیم مورد مطالعه قرار گرفت. pH و دمای اپتیمم فعالیت آنزیمی نیز تعیین گردید. علاوه بر این تأثیر عواملی مانند  pH، زمان عمل آوری بیدها و تیمار با گلوتارآلدئید بر پایداری گویچه‌ها نیز بررسی گردید. یافته‌ها: در این مطالعه میزان تولید و بهره‌وری پروتئاز قلیایی در سلول‌های تثبیت شده نسبت به حالت آزاد به ترتیب 74 و 54 درصد افزایش نشان داد. در مورد میزان پرشدگی گویچه‌ها نیز بهترین تولید در میزان پرشدگی 5 درصد به دست آمد. pH و دمای اپتیمم فعالیت آنزیمی به ترتیب 8 و 65 درجه سانتی‌گراد تعیین گردید. بیشترین پایداری گویچه‌ها توسط عمل آوری در pH 4/7 و زمان ماند یک ساعت در کلرور کلسیم مشاهده شد. تیمار گویچه‌ها با گلوتارآلدئید نه تنها تأثیری بر افزایش پایداری شان نداشت بلکه کاهش پایداری را به دنبال داشت. نتیجه گیری: استفاده از سلول‌های تثبیت شده باسیلوس لیکنی‌فرمیس در بیدهای آلژینات کلسیم می‌تواند موجب افزایش بهره‌وری تولید پروتئاز قلیایی نسبت به روش سلول‌های آزاد شود. از طرفی عدم نیاز به تهیه مکرر مایه تلقیح برای شروع هر تخمیر بسته می‌تواند منجر به کاهش هزینه‌های تولید آنزیم نیز گردد.

کلیدواژه‌ها

موضوعات


1. Deepti A, Pankaj P, Tushar B, Shridhar P. Production of alkaline protease by Penicillum sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochem, 2004; 39(8): 977-981.

2. Wu TY, Mohammad AW, Jahim JMd, Anuar N. Investigations on protease production by a wild-type Aspergillus terreus strain using diluted retentate of pre-filtered palm oil mill effluent (POME) as substrate. Enzyme Microb Tech, 2006; 39(6): 1223–1229.

3. Gupta R, Beg QK, Khan S, Chauhan B. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol, 2002; 60(4): 381-395.

4. Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R,Younes I, Nasri M. Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J Ind Microbiol Biotechnol, 2009; 36(7): 939–948.

5. Bhaskar N, Sudeepa ES, Rashmi HN, Selvi AT. Partial purification and characterization of protease of Bacillus proteolyticus-CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol, 2007; 98(14): 2758–2764.

6. Sareen R, Mishra P. Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09–37. Appl Microbiol Biotechnol, 2008; 79(3):399–405.

7. Singh J, Batra N, Sobti RC. Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem, 2001; 36(8-9): 781-785.

8. Genckal H. Studies on Alkaline Protease Production from Bacillus sp. A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE, İzmir Institute of Technology, 2004.

9. Beshay U. Production of alkaline protease by Teredinobacter turnirae cells immobilized in calcium alginate beads. Afr J Biotechnol, 2003; 2(3):60-65.

10. Adinarayana K, Jyothi B, Ellaiah P. Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS PharmSci Tech, 2005; 6(3): 391–397.

11. Potumarthi R, Subhakar Ch, Pavani A, Jetty A. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresour Technol, 2007; 99(6): 1776–1786.

12. Jetty A, Gangagni rao A, Sarva rao B, Madhavi G, Ramakrishna SV. Comparative studies of air lift and fluidized bed reactors for streptomycin production by immobilized cells of Streptomyces bikiniensis ATCC 11062. Chem Biochem Eng, 2005; 19: 179–184.

13. Yukio Kawaguti H, Ferrari Buzzato M, Castilho Orsi D, Tiemi Suzuki G, Harumi Sato H. Effect of the additives polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production. Process Biochem, 2006; 41(9): 2035–2040.

14. Shrinvas D, Naik GR. Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Inter Biodeterior Biodegrad, 2011; 65(1):29-35.

15. Kunitz M. Crystalline soybean Trypsin Inhibitor, II. General properties. J Gen Physiol, 1947; 30(4): 291-310.