تجزیه و سولفورزدایی زیستی نفت خام توسط باسیلوس‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه آزاد اسلامی واحد تهران شمال

چکیده

سابقه و هدف: امروزه استفاده از میکروارگانیسم‌ها برای حذف آلاینده‌های نفتی از محیط زیست بسیار مورد توجه دانشمندان قرار گرفته است. زیرا روش‌های یا از لحاظ اقتصادی مقرون به صرفه نمی‌باشد یا باعث به وجود آمدن ترکیبات سمی دیگری در محیط می‌شوند. هدف از این پژوهش، ارزیابی و تایید حذف زیستی نفت خام به وسیله باسیلوس‌ها می‌باشد. مواد و روش‌ها: در این پژوهش پانزده گونه باسیلوس تجزیه کننده نفت خام از مناطق آلوده به نفت جدا شد و شرایط بهینه رشدشان در محیط پایه نمکی واجد 1 تا 3% نفت خام مورد ارزیابی گردید. سپس با ارزیابی کشش سطحی و میزان کربن کل، نیتروژن و هیدروژن موجود در نفت خام در قبل و پس از تیمار با باکتری با روش ASTM D5291 اندازه‌گیری شد. همچنین سولفورزدایی زیستی با روش IP 242 مورد بررسی قرار گرفت. یافته‌ها: از گونه‌های مورد بررسی دو گونه که بهترین رشد در محیط پایه نمکی واجد نت داشتند، انتخاب گردیدند. اما بیشترین افزایش در چگالی نوری و شمارش سلول‌های زنده و کاهش pH میط کشت در روز پنجم از دوره آزمایش برای باسیلوس‌های S6 بدست آمد. زمان تجدید نسل بر روی محیط نمکی حاوی 1% نفت خام برای باسیلوس S6 و S35 به‌ترتیب 18 و 25 ساعت محاسبه شد. باسیلوس‌ها قادر به کاهش کشش سطحی محیط به‌ترتیب از 62 (mN/m) به 31 و 38 بودند که بیانگر آن است که این گونه‌ها قادر به تولید میزان قابل توجهی بیوسورفکتانت هستند. نتایج نشان داد که میزان کلی کربن از 85 (درصد جرمی) به 41 و 48 (درصد جرمی) به ترتیب برای باسیلوس S6 و S35 کاهش یافته است. همچنین مشخص شد که پس از گذشت یک ماه 42 درصد و 80 درصد از میزان کلی سولفور موجود در نفت به ترتیب توسط باسیلوس S6 و S35 حذف شده و مورد استفاده قرار گرفته است. نتیجه‌گیری: آنالیزهای آماری بر روی هیدروکربن‌های موجود در نفت دخام با استفاده از گاز کروماتوگرافی (C13-C30) نشان دهنده اثر تخریب زیستی باسیلوس‌ها بر روی هیدروکربن‌های نفتی و توانایی آن‌ها در استفاده از نفت به عنوان تنها منبع کربن و انرژی می‌باشد.

کلیدواژه‌ها

موضوعات


1. Abu-Ruwaida A S, Banat I M, Haditirto S, Salem A and Kadri M. Isolation of biosurfactant-producing bacteria productcharacterization, and evaluation. Biotechnologica, 1991; 4: 315-24

2. AL-Saleh_ES and Obuekwe C . Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil. Intl.Biodeter. Biodegrad, 2005; 56: 1-7

3. Balba, M.T., Al-Shayji, Y., Al-Awadhi, N. and Yateem, A, Isolation and characterization of biosurfactant-producing bacteriafrom oil-contaminated soil. Soil and Sediment Contamination, 2002;11:41-55  

4. Banat I M. Biosurfactant production and possible uses in Microbial Enhanced Oil Recovery and Oil PollutionRemediation: review. Biores Tech, 1995; 51: 1-12.

5. Barathi S and Vasudevan N Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from petroleum contaminated soil. Environ. Intl.2001; 26: 413-416.

6. Bicca F C, Fleck L C, Zachio M A. Production of biosurfactant by hydrocarbon degrading Rhodococcus rubber and Rhodococcus erythropolis. Rev Microbiol,1999; 30:3.

7. Bodour A A, Gerrero-Barajas C and Maier M. Structure and characterization of Flavolipids, a novel class of Biosurfactants produced by Flavolipid sp. Strain MTN11. App and Env Microbiol, 2004; 10(6): 1114-20.

8. Bola O, (2006). Hydrocarbon Degrading Potentials Of Bacteria Isolated From a Nigerian Bitumen (Transand) Deposit, Nature science 4(3) 51-57.

9. Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72, 248-254.

10. Cooper D. G. and B. Goldenberg. Surface active agents from two Bacillus species. Applied and environmental microbiology, 1999; 189:224-229.

11. Da Cunha CD (1996). Avaliacao da Biodegradac¸ ao de Gasolina em Solo. Tese M.Sc., Universidade Federal do Rio de Janeiro, Escola de Qumica, Rio de Janeiro, Brazil, 97p.

12. Del Arco JP and De Franca FP. Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment. Environ. Pollut. 2001;110: 515-519.

13. Emtiazi, G. and Shakarami, H., Utilization of petroleum hydrocarbons by Pseudomonas. sp. and transformed Escherichia coli. African Journal of Biotechnology. 2004; Vol. 4 (2), pp. 172-176.

14. Fiocco, R.J. and Lewis, A. Oil spill dispersants. Pure and Applied Chemistry, 71, 27-42.

15. Francy D S, Thomas J M, Raymond R L and Ward C H (1991). Emulsification of hydrocarbon by surface bacteria. J Industrial Microbiol. 1999; 8: 237-46.

16. Head IM and Swannell RP. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 1999;10: 234-239.

17. Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K. and Harayama, S . Predominant growth of Alcanivorax strains in oil-contaminated and nutrientsupplemented sea water. Environmental Microbiology. 2002; 4, 141-147.

18. Kim H S, Young B, Lee C H et al (1997). Production and properties of a lipopeptide biosurfactants .

19. Korda A, Santas P, Tenente A and Santas R. Petroleum hydrocarbon bioremediation. Appl. Microbiol. Biotechnol. 1997;48: 677-689.

20. Lessard, R.R. and DeMarco, G. The significance of oil spill dispersants. Spill Science & Technology Bulletin. 2000; 6:59-68.

21. Margesin R. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Intl. Biodeter. Biodegrad. 2000;46: 3-10.

22. Matthew O. Ilori. Hydrocarbon Degrading Potentials of Bacteria Isolated from a Nigerian Bitumen (Tarsand) Deposit .Nature and Science. 2006;4(3):51-57.

23. Naturforsch Z Hydrolytic Enzymes and Surfactants of Bacterial Isolates from Lubricant-Contaminated Wastewater; Z. Naturforsch. 58c, 87-92 (2003).

24. Ojo OA. Petroleum-hydrocarbon utilization by native bacterial population from a wastewater canal Southwest Nigeria African Journal of Biotechnology 2006; Vol. 5 (4), 333-337.

25. Okerentugba PO and Ezeronye OU. Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluents in Nigeria. Afr. J. Biotechnol. 2003; 2(9):288-292.

26. Prince, R.C. Petroleum and other hydrocarbons,biodegradation of. In: Encyclopedia of EnvironmentalMicrobiology (G. Bitton, G., ed.) John Wiley, New York, 2002;2402-2416.

27. Prince, R.C. and Bragg, J.R. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediation Journal, 1997; 1, 97-104.

28. Prince, R.C. and Clark, J.R., Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy. In Hydrocarbon Remediation (R.E. Hinchee, B.C. Alleman, R.E. Hoeppel and R.N. Miller, eds.), Lewis Publishers, Boca Raton, FL. 1994;107-124.

29. Rahman K and Street G(2002). Bioremediation Sludge Using Bacterial Consortium With Biosurfactant, Clean Environment Management -TS13BA

30. Prince, R.C and Lessard, R. Oil & Gas Science and Technology-Rev. IFP, 2003;Vol. 58, No. 4, pp. 463-468

31. Thomas, R. and Lunel, T. The Braer incident; dispersion in action. In: Proceedings of the Sixteenth Arctic Marine Oilspill Program Technical Seminar, Edmonton, Alberta, 1993;843-859.

32. Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF and Soriano AU.Bioremediation of a weathered and a recently oil-contaminated soilsfrom Brazil: a comparison study. Chemosphere. 2005;58: 515-522.

33. Urum, K., Pekdemir, T. and Gopur, M., (2003). Optimum conditions for washing of crude oil-contaminated soil.

34. Withbiosurfactant solutions. Process Safety and Environm. Protect. Transact. of the Institut. of Chem. Engin., 81:203-209.

35. Wagner-Dobler I., Bennasar A., Vancanneyt M Strompl C., Brummer I. and Eichner C. Microcosm enrichment of biphenyl degrading microbial communities from soils and sediments. Appl. Environ Microbiol. 1998;64, 3014-3022

36. Zhang XX, Cheng SP, Zhu C-J and Sun S-L. Microbial PAH Degradation in Soil: Degradation Pathways and Contributing Factors. Pedosphere. 2006;16(5): 555-565.